The Moufang loops of order 64 and 81
نویسندگان
چکیده
We classify Moufang loops of order 64 and 81 up to isomorphism, using a linear algebraic approach to central loop extensions. In addition to the 267 groups of order 64, there are 4262 nonassociative Moufang loops of order 64. In addition to the 15 groups of order 81, there are 5 nonassociative Moufang loops of order 81, 2 of which are commutative.
منابع مشابه
Toward the classification of Moufang loops of order 64
We show how to obtain all nonassociative Moufang loops of order less than 64 and 4262 nonassociative Moufang loops of order 64 in a unified way. We conjecture that there are no other nonassociative Moufang loops of order 64. The main idea of the computer search is to modify precisely one quarter of the multiplication table in a certain way, previously applied to small
متن کاملMoufang Loops with Commuting Inner Mappings
We investigate the relation between the structure of a Moufang loop and its inner mapping group. Moufang loops of odd order with commuting inner mappings have nilpotency class at most two. 6-divisible Moufang loops with commuting inner mappings have nilpotency class at most two. There is a Moufang loop of order 2 with commuting inner mappings and of nilpotency class three.
متن کاملMoufang Loops of Small Order
The main result of this paper is the determination of all nonassociative Moufang loops of orders *31. Combinatorial type methods are used to consider a number of cases which lead to the discovery of 13 loops of the type in question and prove that there can be no others. All of the loops found are isomorphic to all of their loop isotopes, are solvable, and satisfy both Lagrange's theorem and Syl...
متن کاملSteiner loops satisfying Moufang's theorem
A loop satisfies Moufang’s theorem whenever the subloop generated by three associating elements is a group. Moufang loops (loops that satisfy the Moufang identities) satisfy Moufang’s theorem, but it is possible for a loop that is not Moufang to nevertheless satisfy Moufang’s theorem. Steiner loops that are not Moufang loops are known to arise from Steiner triple systems in which some triangle ...
متن کاملMoufang Loops of Odd Order p 21 p 2 2 · · · p 2 n q 3
It has been shown that for distinct odd primes p1, p2, . . . , pn and q, all Moufang loops of order p1p2 · · · pnq are groups if and only if q is not congruent to 1 modulo pi for each i. In this paper, we extend that result to include Moufang loops of order p1p 2 2 · · · pnq. Mathematics Subject Classification: 20N05
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Comput.
دوره 42 شماره
صفحات -
تاریخ انتشار 2007